Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

PROBLEMS OF THE NAVAL AIRCRAFT FACTORY DURING THE WAR

1919-01-01
190017
THE Navy Department established the Naval Aircraft Factory (a) to assure a part, at least, of its aircraft supply; (b) to obtain cost data for the Department's guidance in dealing with private manufacturers, and (c) to have under its own control a factory capable of producing experimental work. The history of this development is given in some detail, including statistics of size, valuations and output.
Technical Paper

THE FUTURE PASSENGER CAR

1919-01-01
190049
Efficiency, appearance and comfort will be the catchwords of the car of the future. Extreme simplicity of chassis will be needed to reduce weight and permit the use of substantial sheet-metal fenders, mud-guards and bodies. The center of gravity should be as low as possible consistent with good appearance. For comfort the width and angle of seats will be studied more carefully and the doors will be wider. A new type of spring suspension is coming to the fore, known as the three-point cantilever. Cars adopting it will have a certain wheelbase and a longer spring base. A car equipped with this new mechanism has been driven at 60 m.p.h. in safety and comfort without the use of shock absorbers or snubbers. It is the opinion of the author that this new spring suspension will revolutionize passenger-car construction.
Technical Paper

PROBABLE EFFECT ON AUTOMOBILE DESIGN OF EXPERIENCE WITH WAR AIRPLANES

1919-01-01
190007
THE impression that recent aircraft experience should have taught engineers how to revolutionize automobile construction and performance, is not warranted by the facts involved. Aircraft and automobiles both embody powerplants, transmission mechanisms, running gear, bodies and controls, but their functions are entirely different. The controls of an airplane, except in work on the ground, act upon a gas, whereas with an automobile the resistant medium is a relatively solid surface. Similarly, the prime function of the fuselage is strength, weight considerations resulting in paying scant attention to comfort and convenience, which are the first requirements of an automobile body. Aircraft running-gear is designed for landing on special fields, and is not in use the major portion of the time. The running-gear is the backbone of an automobile, in use continuously for support, propulsion and steering; hence its utterly different design.
Technical Paper

SOME PROBLEMS IN AIRPLANE CONSTRUCTION

1917-01-01
170001
The authors advance for discussion some important problems in the construction of airplanes for military use in this country. The functions of military airplanes designed for strategical and tactical reconnaissance, control of artillery fire and for pursuit are outlined. Problems in construction with reference to the two-propeller system, methods of reducing vibration, application of starting motors, details of the gasoline supply-system, metal construction for airplanes, flexible piping, desirable characteristics of mufflers, shock absorbers, landing gear, fire safety-devices, control of cooling-water temperature, variable camber wings, variable pitch propellers and propeller stresses, are all given consideration. The paper is concluded with suggestions for improvement in design relating to the use of bearing shims, the rigidity of crankcase castings, interchangeability of parts and better detail construction in the oiling, ignition, fuel supply and cooling systems.
Technical Paper

DESIGN AND PRODUCTION OF AIRCRAFT IN TIME OF WAR

1917-01-01
170026
Starting with the statement that command of the air in warfare rests largely with the side that produces the best single-seater fighter, the author proceeds to outline some of the problems confronting the designer of fighting airplanes, and particularly the smaller ones. Considering better performance and better fighting qualities as the main desiderata, the author discusses means of obtaining them by: (1) increasing the horsepower-weight ratio; (2) decreasing the wing or structure resistances; (3) devising a new arrangement of the supporting planes, with regard to the position of pilot or crew, or by a combination of the above. Considerable space is devoted to methods of decreasing wing resistance, principally by employing low-resistance aerofoils, and the shaping of wing tips is also referred to.
Technical Paper

ENGINES OF THE AIR

1916-01-01
160039
After a brief consideration of airplane-engine practice in France, England and Germany, the author outlines the problems encountered in designing a twelve-cylinder aviation engine. He explains at some length the difficulties in determining the connection between propeller and engine and shows why valve-in-head location was chosen. Such features of engine design as the mounting of carbureter and exhaust pipes, methods of fuel and lubricant supply and details involved in selecting the lighting, starting and ignition equipment are considered.
Technical Paper

RECENT AEROPLANE-ENGINE DEVELOPMENTS

1916-01-01
160025
The author gives a brief review of developments during the past year in the construction of aeroplanes, particularly as affected by the European War. He takes as an example the Renault twelve-cylinder engine, citing the respects in which the present differs from previous models. Such factors as the changes in cooling systems, method of drive, valve construction and starting devices are considered. The requirements of aeroplane engines, such as constant service, high speeds (of aeroplanes) and stream-line form of engines and radiators, are outlined. Propeller requirements are dealt with at length, curves being given by which the efficiency and diameter of the propeller can be obtained. In conclusion a number of different engine installations are illustrated and compared.
Technical Paper

A Driving Simulator Using Microprocessors

1800-01-01
871156
An inexpensive driving simulation system with sufficient fidelity has been developed. The system produces motion cues of four degrees of freedom, visual and auditory cues, and control feel on the steering wheel. This paper describes the features of this newly developed system and gives examples that demonstrate its effectiveness. The motion cues provided in this system are yaw, heave, and lateral and fore/aft accelerations. The lateral and fore/aft accelerations are simulated by tilting the simulator compartment. A computer-processed road image is given through a CRT monitor. The restoring torque of the steering wheel is produced by an electrical servosystem via a coil spring. Cruising sound is given in order to improve speed perception. Since the system uses digital computers, the vehicle characteristics are altered easily by merely rewriting the software. This enables us to simulate special vehicle dynamics such as front & rear wheel steering.
Technical Paper

Influence of the Dynamical Tyre Properties on the Motorcycle Driving Behaviour

1800-01-01
871227
The influence of the tyre properties on the driving behaviour of single-track vehicles has been measured by performing running tests with full-scale vehicles. The indoor dynamic tyre measurements using the sideslip angle as the input signal reveale that the sideforce and self-aligning moment characteristics are helpful explaining the measured driving behaviour. The obtained tyre parameters values and second order equations have been implemented in the simulation program ADINA-MOBSIP. This program is specially conceived for the simulation of the driving behaviour of single-track vehicles and is based on the finite element method.
X